
Customer: Wombat
Date: July 20th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Wombat

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; Staking

Platform EVM

Network Ethereum, Polygon

Language Solidity

Methods Manual Review, Automated Review, Architecture review

Website https://wombat.app

Timeline 04.07.2022 – 20.07.2022

Changelog 07.07.2022 – Initial Review
20.07.2022 – Second Review

www.hacken.io
2

https://wombat.app

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 13

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by Wombat (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/wombat-tech/wombat-token
Commit:

b4b0e4ccb44fd1bd9f2e9603ca4e9bfea5b34d4a
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
https://whitepaper.wombat.app/

Type: Technical description
https://whitepaper.wombat.app/

Type: Functional requirements
https://whitepaper.wombat.app/

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/LinearCheckpointDualBeneficiaryVestingWallet.sol
SHA3: 212c660ca9bad9bda9a6be6aefa53201018e662b4197186e3fbc1aa02edb2830

File: ./contracts/LinearCheckpointVesting.sol
SHA3: 9bbba33b21d029f12b02241aee06d46b7872f3eb8d4b45520751ae85479c1ad9

File: ./contracts/LinearCheckpointVestingWallet.sol
SHA3: 015b50be44ea8a33f55fe7f24dbd479d4a868eec9b41b720e8a8fd1e9171b5fa

File: ./contracts/PercentageCheckpointVestingWallet.sol
SHA3: d2ab145c0e1d4db64de73f347eb736da79513ddf51b3027981c1ceb892fb305b

File: ./contracts/WombatChildToken.sol
SHA3: 0e2cbe60843e7bc006af09d143ab8a2a7686631d67dd406e5e63d5269474eb2d

File: ./contracts/WombatToken.sol
SHA3: 1dee402f296f5d77a7529470ffb2cc4cea0721575eefc979cec8a23a60f4c4c3

Second review scope
Repository:

https://github.com/wombat-tech/wombat-token
Commit:

b4091c1e5015152aad8a2573bf85b26d87f39fcf
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
https://whitepaper.wombat.app/

Type: Technical description
https://whitepaper.wombat.app/

www.hacken.io
4

https://github.com/wombat-tech/wombat-token
https://whitepaper.wombat.app/
https://whitepaper.wombat.app/
https://whitepaper.wombat.app/
https://github.com/wombat-tech/wombat-token
https://whitepaper.wombat.app/
https://whitepaper.wombat.app/

Type: Functional requirements
https://whitepaper.wombat.app/

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/LinearCheckpointDualBeneficiaryVestingWallet.sol
SHA3: 8779d23ada374fd51ad19934e3dc1933f4bb35d7e288d715871d91c5f3384dad

File: ./contracts/LinearCheckpointVesting.sol
SHA3: 3c2a9e20576b9c092f127799aa30693d963a428494e2b3a0bb54a65a98bb1038

File: ./contracts/LinearCheckpointVestingWallet.sol
SHA3: 5f8c0cb2a38e742b8213ea1276d62cfb9f29dffa50277468cbd6978e06137ca5

File: ./contracts/PercentageCheckpointVestingWallet.sol
SHA3: 043a89ced55f63dce26985812773b97f9834618b5b258f24bddfb6aa82147cf1

File: ./contracts/WombatChildToken.sol
SHA3: e0a6b7d03e1fd9fd4c1475bbd3bd18e777c39f47e999c9f5a14f7387068b034d

File: ./contracts/WombatToken.sol
SHA3: 177d18e587c4e558506bf052fbf42c067c732577381852bd9e85ba5626b9043a

www.hacken.io
5

https://whitepaper.wombat.app/

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10. Functional
requirements are partially missed. A technical description is not provided.

Code quality
The total CodeQuality score is 8 out of 10. Deployment and basic user
interactions are covered with tests. Negative cases coverage exists, but
interactions by multiple users are not tested thoroughly.

Architecture quality
The architecture quality score is 6 out of 10. 5 contracts reference other
contracts that can be changed in the future.

Security score
As a result of the second audit, the code does not contain any issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.1.

www.hacken.io
7

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows and
underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent version of
the Solidity compiler. Passed

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call should be

checked. Not Relevant

Access Control
& Authorization CWE-284

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be self-destructible

while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation SWC-110 Properly functioning code should never reach

a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should never
be used. Passed

Delegatecall to
Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state unless
it is required.

Passed

Race Conditions SWC-114 Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values as SWC-116 Block numbers should not be used for time Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116

a proxy for
time

calculations.

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a unique
id. A transaction hash should not be used as
a unique id. Chain identifier should always
be used. All parameters from the signature
should be used in signer recovery

Passed

Shadowing State
Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources of
Randomness SWC-120 Random values should never be generated from

Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

EEA-Leve
l-2

SWC-126

All external calls should be performed only
to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused variables
if this is not justified by design. Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be withdrawn

without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data
Consistency Custom Smart contract data should be consistent all

over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not be
any cases when execution fails due to the
block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should be

followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment Custom The project should contain a configured Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Consistency development environment with a comprehensive
description of how to compile, build and
deploy the code.

Secure Oracles
Usage Custom

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit tests.
Test coverage should be 100%, with both
negative and positive cases covered. Usage
of contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

Wombat - The Web 3 Gaming Platform with the following contracts:
● Wombat Token — ERC-20 token that mints all initial supply to a

deployer. Additional minting is not allowed.
It has the following attributes:

○ Name: WOMBAT token
○ Symbol: WOMBAT
○ Decimals: 18
○ Total supply: 10b tokens.
○ Blockchain: Ethereum

● Wombat Child Token — ERC-20 Polygon token extended with the
‘deposit’ and ‘withdraw’ functions.

Deposit - called by the ChildChainManagerProxy contract
whenever a deposit is initiated from the root chain. This
function internally mints the token on the child chain. In this
case: Polygon.
Withdraw - will internally burn the token on the child chain.

It has the following attributes:
○ Name: WOMBAT token
○ Symbol: WOMBAT
○ Decimals: 18
○ Blockchain: Polygon

● LinearCheckpointVestingWallet.sol — is a smart contract for investors
to lock their investment for a time and then release it according to
a schedule. The schedule is a set of timestamps called checkpoints at
which "chunks" of the investment in Wombat tokens become available.
The lock-up period and the schedule are configured as timestamps
during deployment. This allows to lock up tokens for e.g. 12 months
and then release them over 6 months, 1/6 at a time.

● PercentageCheckpointVestingWallet.sol - is a smart contract to which
community tokens are transferred and then can be claimed monthly.
This contract allows us to lock up tokens and then release 2% monthly
for 60 months. Afterward, the full remaining amount is releasable.

● LinearCheckpointDualBeneficiaryVestingWallet.sol - is a vesting
wallet that releases to two addresses instead of one for tax reasons.
Both addresses can initiate the release. This allows to lock up
tokens for 24 months and then release 50% to one address and 50% to
another address over the following 24 months 1/24 at a time.

● LinearCheckpointVesting.sol - is an abstract contract, which other
contracts such as LinearCheckpointDualBeneficiaryVestingWallet and
LinearCheckpointVestingWallet inherit. LinearCheckpointVesting
contract contains the state variable _checkpoints that represent the
timestamps (in seconds) at which chunks of the vested amount are
released. LinearCheckpointVesting provides view functionality for
vesting schedules.

www.hacken.io
11

Privileged roles
● The owner of the WombatToken contract will be the owner of all total

token supply once WombatToken is deployed.
● Pauser role has the possibility to pause and unpause token transfers.
● Two beneficiary addresses - used in a vesting wallet that releases to

these addresses instead of one for tax reasons. These two addresses
will receive funds after the vesting period.

Risks

● In case of an admin keys leak, an attacker will be able to pause

WombatToken contract at any moment, and it will lead to funds being

frozen for any holders of tokens for some time. The

DEFAULT_ADMIN_ROLE address will be able to unpause, but the attacker

can pause WombatToken, at any time.

www.hacken.io
12

Findings

Critical

No high severity issues were found.

High

1. Unlimited token minting.

The mintable token amount should not exceed the amount declared in
the documentation. This will lead to imbalances in tokenomics.

According to the documentation total token supply is 10 billion.
However, the code has no upper limit for minting.

This will lead to imbalances in tokenomics.

File: ./contracts/WombatChildToken.sol

Contract: WombatChildToken

Function: mint

Recommendation: Limit the amount of tokens that can be minted
according to the documentation.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

2. Undocumented behavior.

The code should not contain undocumented functionality. The existence
of such functionality can lead to unexpected behavior of the
contract.

The functionality allows the owner to pause all the token transfers
anytime. Pausing functionality should be limited by clear contract
rules. The documentation does not mention the functionality of
transfers stopping.

This will lead to imbalances in tokenomics.

Files: ./contracts/WombatToken.sol

./contracts/WombatChildToken.sol

Contracts: WombatToken, WombatChildToken

Functions: pause, unpause

Recommendation: Remove pausing functionality or notify users about it
in the provided documentation.

www.hacken.io
13

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

Medium

1. Costly operations inside a loop.

Reading a state variable or an attribute of it may be costly in terms
of Gas fees. The _checkpoints and _percentage variables are often
used in a loop inside the _vestingSchedule function.

This can lead to high Gas consumption.

File: ./contracts/PercentageCheckpointVestingWallet.sol

Contract: PercentageCheckpointVestingWallet

State variables: _checkpoints, _percentage

Recommendation: Save the state variable or its attribute into a local
variable and use it inside the loop.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

Low

1. Missing empty array check.

LinearCheckpointVesting’s constructor does not contain empty array
validation for ‘checkpointTimestamps’ parameter.

Missing an empty array check can lead to an error. For example the
value of _checkpoints.length will be zero and it will lead to zero
division error : (totalAllocation / _checkpoints.length) *
currentCheckpoint;

File: ./contracts/LinearCheckpointVesting.sol

Contract: LinearCheckpointVesting

Recommendation: Implement empty array checks.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

2. Division before multiplication.

Solidity integer division might truncate.

LinearCheckpointDualBeneficiaryVestingWallet’s ‘release’ function
performs a multiplication on the result of a division:
uint256 mainBeneficiaryAmount = (releasable /100) *_percentageSplit;

As a result, performing multiplication before division can sometimes

www.hacken.io
14

avoid loss of precision.

File: ./contracts/LinearCheckpointDualBeneficiaryVestingWallet.sol

Contract: LinearCheckpointDualBeneficiaryVestingWallet

Function: release

Recommendation: Consider ordering multiplication before division.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

3. Missing zero address validation.

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

File: ./contracts/LinearCheckpointDualBeneficiaryVestingWallet.sol

Constructor variable: tokenAddress

Recommendation: Implement zero address checks.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

4. Different pragma directives are used.

Usage of different pragma directives can lead to errors in code
logic.

LinearCheckpointDualBeneficiaryVestingWallet,
LinearCheckpointVesting, LinearCheckpointVestingWallet,
PercentageCheckpointVestingWallet, WombatChildToken, WombatToken use
^0.8.0 Solidity version.

Files: ./contracts/LinearCheckpointDualBeneficiaryVestingWallet.sol

./contracts/LinearCheckpointVesting.sol

./contracts/LinearCheckpointVestingWallet.sol

./contracts/PercentageCheckpointVestingWallet.sol

./contracts/WombatChildToken.sol

./contracts/WombatToken.sol

Contracts: LinearCheckpointDualBeneficiaryVestingWallet.sol,
LinearCheckpointVesting.sol, LinearCheckpointVestingWallet.sol,
PercentageCheckpointVestingWallet.sol, WombatChildToken.sol,
WombatToken.sol

Recommendation: Use a specific Solidity version for both contracts.

www.hacken.io
15

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

5. Functions that can be declared external.

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Files: ./contracts/PercentageCheckpointVestingWallet.sol,

./contracts/LinearCheckpointVesting.sol

./contracts/LinearCheckpointDualBeneficiaryVestingWallet.sol

Contracts:PercentageCheckpointVestingWallet.sol
LinearCheckpointVesting.sol,
LinearCheckpointDualBeneficiaryVestingWallet.sol

Functions: checkpoints, start, duration, percentageSplit, release

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

6. Variable shadowing.

State variables should not be shadowed.

The constructors of WombatChildToken and WombatToken shadow such
variables as ‘name’ and ‘symbol’ in ERC20 and IERC20Metadata
contracts. LinearCheckpointVestingWallet’s local variable
‘checkpoints’ shadows LinearCheckpointVesting’s ‘checkpoints’
function. LinearCheckpointDualBeneficiaryVestingWallet’s constructor
variable ‘checkpoints’ shadows ‘checkpoints’ functions inside
LinearCheckpointVesting and LinearCheckpointVestingWallet contract.

Shadowing variables can lead to errors in the logic of code.

Files: ./contracts/WombatChildToken.sol

./contracts/LinearCheckpointVestingWallet.sol

Contracts: WombatChildToken.sol, LinearCheckpointVestingWallet.sol

Constructors: WombatChildToken, LinearCheckpointVestingWallet

Recommendation: Rename the local variables that shadow another
component.

Status: Fixed (Revised commit:
b4091c1e5015152aad8a2573bf85b26d87f39fcf)

www.hacken.io
16

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
17

